Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
Add more filters










Publication year range
1.
J Mol Biol ; 436(9): 168547, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38508304

ABSTRACT

Plant C-glycosylated aromatic polyketides are important for plant and animal health. These are specialized metabolites that perform functions both within the plant, and in interaction with soil or intestinal microbes. Despite the importance of these plant compounds, there is still limited knowledge of how they are metabolized. The Gram-positive aerobic soil bacterium Deinococcus aerius strain TR0125 and other Deinococcus species thrive in a wide range of harsh environments. In this work, we identified a C-glycoside deglycosylation gene cluster in the genome of D. aerius. The cluster includes three genes coding for a GMC-type oxidoreductase (DaCGO1) that oxidizes the glucosyl C3 position in aromatic C-glucosyl compounds, which in turn provides the substrate for the C-glycoside deglycosidase (DaCGD; composed of α+ß subunits) that cleaves the glucosyl-aglycone C-C bond. Our results from size-exclusion chromatography, single particle cryo-electron microscopy and X-ray crystallography show that DaCGD is an α2ß2 heterotetramer, which represents a novel oligomeric state among bacterial CGDs. Importantly, the high-resolution X-ray structure of DaCGD provides valuable insights into the activation of the catalytic hydroxide ion by Lys261. DaCGO1 is specific for the 6-C-glucosyl flavones isovitexin, isoorientin and the 2-C-glucosyl xanthonoid mangiferin, and the subsequent C-C-bond cleavage by DaCGD generated apigenin, luteolin and norathyriol, respectively. Of the substrates tested, isovitexin was the preferred substrate (DaCGO1, Km 0.047 mM, kcat 51 min-1; DaCGO1/DaCGD, Km 0.083 mM, kcat 0.42 min-1).


Subject(s)
Bacterial Proteins , Deinococcus , Flavonoids , Genes, Bacterial , Multigene Family , Xanthones , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Crystallography, X-Ray , Deinococcus/genetics , Deinococcus/metabolism , Flavonoids/metabolism , Flavonoids/chemistry , Glycosides/metabolism , Glycosides/chemistry , Glycosylation , Models, Molecular , Xanthones/metabolism , Xanthones/chemistry
2.
Front Microbiol ; 14: 1216799, 2023.
Article in English | MEDLINE | ID: mdl-37502397

ABSTRACT

The Gram-negative bacterium Xanthomonas campestris is one of the most problematic phytopathogens, and especially the pathovar campestris (Xcc) that causes a devastating plant disease known as black rot and it is of considerable interest to understand the molecular mechanisms that enable virulence and pathogenicity. Gram-negative bacteria depend on lipoproteins (LPs) that serve many important functions including control of cell shape and integrity, biogenesis of the outer membrane (OM) and establishment of transport pathways across the periplasm. The LPs are localized to the OM where they are attached via a lipid anchor by a process known as the localization of lipoprotein (Lol) pathway. Once a lipid anchor has been synthesized on the nascent LP, the Lol pathway is initiated by a membrane-bound ABC transporter that extracts the lipid anchor of the LP from the IM. The ABC extractor presents the extracted LP to the transport protein LolA, which binds the anchor and thereby shields it from the hydrophilic periplasmic milieu. It is assumed that LolA then carries the LP across the periplasm to the OM. At the periplasmic face of the OM, the LP cargo is delivered to LolB, which completes the Lol pathway by inserting the LP anchor in the inner leaflet of the outer membrane. Earlier studies have shown that loss of Xcc LolA or LolB leads to decreased virulence and pathogenicity during plant infection, which motivates studies to better understand the Lol system in Xcc. In this study, we report the first experimental structure of a complex between LolA and LolB. The crystal structure reveals a stable LolA-LolB complex in the absence of LP. The structural integrity of the LP-free complex is safeguarded by specific protein-protein interactions that do not coincide with interactions predicted to participate in lipid binding. The results allow us to identify structural determinants that enable Xcc LolA to dock with LolB and initiate LP transfer.

3.
Nat Commun ; 14(1): 4526, 2023 07 27.
Article in English | MEDLINE | ID: mdl-37500617

ABSTRACT

(1,3;1,4)-ß-D-Glucans are widely distributed in the cell walls of grasses (family Poaceae) and closely related families, as well as some other vascular plants. Additionally, they have been found in other organisms, including fungi, lichens, brown algae, charophycean green algae, and the bacterium Sinorhizobium meliloti. Only three members of the Cellulose Synthase-Like (CSL) genes in the families CSLF, CSLH, and CSLJ are implicated in (1,3;1,4)-ß-D-glucan biosynthesis in grasses. Little is known about the enzymes responsible for synthesizing (1,3;1,4)-ß-D-glucans outside the grasses. In the present study, we report the presence of (1,3;1,4)-ß-D-glucans in the exopolysaccharides of the Gram-positive bacterium Romboutsia ilealis CRIBT. We also report that RiGT2 is the candidate gene of R. ilealis that encodes (1,3;1,4)-ß-D-glucan synthase. RiGT2 has conserved glycosyltransferase family 2 (GT2) motifs, including D, D, D, QXXRW, and a C-terminal PilZ domain that resembles the C-terminal domain of bacteria cellulose synthase, BcsA. Using a direct gain-of-function approach, we insert RiGT2 into Saccharomyces cerevisiae, and (1,3;1,4)-ß-D-glucans are produced with structures similar to those of the (1,3;1,4)-ß-D-glucans of the lichen Cetraria islandica. Phylogenetic analysis reveals that putative (1,3;1,4)-ß-D-glucan synthase candidate genes in several other bacterial species support the finding of (1,3;1,4)-ß-D-glucans in these species.


Subject(s)
Glucans , beta-Glucans , Humans , Phylogeny , beta-Glucans/chemistry , Polysaccharides , Poaceae/genetics , Cell Wall
4.
Front Microbiol ; 13: 1050160, 2022.
Article in English | MEDLINE | ID: mdl-36569051

ABSTRACT

Ferulic acid is a common constituent of the plant cell-wall matrix where it decorates and can crosslink mainly arabinoxylans to provide structural reinforcement. Microbial feruloyl esterases (FAEs) specialize in catalyzing hydrolysis of the ester bonds between phenolic acids and sugar residues in plant cell-wall polysaccharides such as arabinoxylan to release cinnamoyl compounds. Feruloyl esterases from lactic acid bacteria (LAB) have been highlighted as interesting enzymes for their potential applications in the food and pharmaceutical industries; however, there are few studies on the activity and structure of FAEs of LAB origin. Here, we report the crystal structure and biochemical characterization of a feruloyl esterase (LbFAE) from Lentilactobacillus buchneri, a LAB strain that has been used as a silage additive. The LbFAE structure was determined in the absence and presence of product (FA) and reveals a new type of homodimer association not previously observed for fungal or bacterial FAEs. The two subunits associate to restrict access to the active site such that only single FA chains attached to arabinoxylan can be accommodated, an arrangement that excludes access to FA cross-links between arabinoxylan chains. This narrow specificity is further corroborated by the observation that no FA dimers are produced, only FA, when feruloylated arabinoxylan is used as substrate. Docking of arabinofuranosyl-ferulate in the LbFAE structure highlights the restricted active site and lends further support to our hypothesis that LbFAE is specific for single FA side chains in arabinoxylan.

5.
Int J Mol Sci ; 23(21)2022 Nov 06.
Article in English | MEDLINE | ID: mdl-36362382

ABSTRACT

Pyranose oxidase (POx, glucose 2-oxidase; EC 1.1.3.10, pyranose:oxygen 2-oxidoreductase) is an FAD-dependent oxidoreductase and a member of the auxiliary activity (AA) enzymes (subfamily AA3_4) in the CAZy database. Despite the general interest in fungal POxs, only a few bacterial POxs have been studied so far. Here, we report the biochemical characterization of a POx from Streptomyces canus (ScPOx), the sequence of which is positioned in a separate, hitherto unexplored clade of the POx phylogenetic tree. Kinetic analyses revealed that ScPOx uses monosaccharide sugars (such as d-glucose, d-xylose, d-galactose) as its electron-donor substrates, albeit with low catalytic efficiencies. Interestingly, various C- and O-glycosides (such as puerarin) were oxidized by ScPOx as well. Some of these glycosides are characteristic substrates for the recently described FAD-dependent C-glycoside 3-oxidase from Microbacterium trichothecenolyticum. Here, we show that FAD-dependent C-glycoside 3-oxidases and pyranose oxidases are enzymes belonging to the same sequence space.


Subject(s)
Flavin-Adenine Dinucleotide , Oxidoreductases , Phylogeny , Oxidoreductases/genetics , Oxidoreductases/metabolism , Monosaccharides , Kinetics , Bacteria/metabolism , Glycosides
6.
Biomed Pharmacother ; 142: 112037, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34392084

ABSTRACT

Fighting cancer still relies on chemo- and radiation therapy, which is a trade-off between effective clearance of malignant cells and severe side effects on healthy tissue. Targeted cancer treatment on the other hand is a promising and refined strategy with less systemic interference. The enzyme horseradish peroxidase (HRP) exhibits cytotoxic effects on cancer cells in combination with indole-3-acetic acid (IAA). However, the plant-derived enzyme is out of bounds for medical purposes due to its foreign glycosylation pattern and resulting rapid clearance and immunogenicity. In this study, we generated recombinant, unglycosylated HRP variants in Escherichia coli using random mutagenesis and investigated their biochemical properties and suitability for cancer treatment. The cytotoxicity of the HRP-IAA enzyme prodrug system was assessed in vitro with HCT-116 human colon, FaDu human nasopharyngeal squamous cell carcinoma and murine colon adenocarcinoma cells (MC38). Extensive cytotoxicity was shown in all three cancer cell lines: the cell viability of HCT-116 and MC38 cells treated with HRP-IAA was below 1% after 24 h incubation and the surviving fraction of FaDu cells was ≤ 10% after 72 h. However, no cytotoxic effect was observed upon in vivo intratumoral application of HRP-IAA on a MC38 tumor model in C57BL/6J mice. However, we expect that targeting of HRP to the tumor by conjugation to specific antibodies or antibody fragments will reduce HRP clearance and thereby enhance therapy efficacy.


Subject(s)
Antineoplastic Agents/pharmacology , Horseradish Peroxidase/pharmacology , Indoleacetic Acids/chemistry , Adenocarcinoma/drug therapy , Adenocarcinoma/pathology , Animals , Antineoplastic Agents/chemistry , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/pathology , Cell Line, Tumor , Cell Survival/drug effects , Colonic Neoplasms/drug therapy , Colonic Neoplasms/pathology , Female , HCT116 Cells , Horseradish Peroxidase/chemistry , Humans , Mice , Mice, Inbred C57BL , Nasopharyngeal Neoplasms/drug therapy , Nasopharyngeal Neoplasms/pathology , Prodrugs
7.
J Struct Biol X ; 5: 100048, 2021.
Article in English | MEDLINE | ID: mdl-34195602

ABSTRACT

The termite Reticulitermes flavipes causes extensive damage due to the high efficiency and broad specificity of the ligno- and hemicellulolytic enzyme systems produced by its symbionts. Thus, the R. flavipes gut microbiome is expected to constitute an excellent source of enzymes that can be used for the degradation and valorization of plant biomass. The symbiont Opitutaceae bacterium strain TAV5 belongs to the phylum Verrucomicrobia and thrives in the hindgut of R. flavipes. The sequence of the gene with the locus tag opit5_10225 in the Opitutaceae bacterium strain TAV5 genome has been classified as a member of glycoside hydrolase family 5 (GH5), and provisionally annotated as an endo-ß-mannanase. We characterized biochemically and structurally the opit5_10225 gene product, and show that the enzyme, Op5Man5, is an exo-ß-1,4-mannosidase [EC 3.2.1.25] that is highly specific for ß-1,4-mannosidic bonds in mannooligosaccharides and ivory nut mannan. The structure of Op5Man5 was phased using electron cryo-microscopy and further determined and refined at 2.2 Šresolution using X-ray crystallography. Op5Man5 features a 200-kDa large homotrimer composed of three modular monomers. Despite insignificant sequence similarity, the structure of the monomer, and homotrimeric assembly are similar to that of the GH42-family ß-galactosidases and the GH164-family exo-ß-1,4-mannosidase Bs164 from Bacteroides salyersiae. To the best of our knowledge Op5Man5 is the first structure of a glycoside hydrolase from a bacterial symbiont isolated from the R. flavipes digestive tract, as well as the first example of a GH5 glycoside hydrolase with a GH42 ß-galactosidase-type homotrimeric structure.

8.
Enzyme Microb Technol ; 143: 109723, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33375982

ABSTRACT

The impact of various ß-glucans on the gut microbiome and immune system of vertebrates is becoming increasingly recognized. Besides the fundamental interest in understanding how ß-glucans support human and animal health, enzymes that metabolize ß-glucans are of interest for hemicellulose bioprocessing. Our earlier metagenomic analysis of the moose rumen microbiome identified a gene coding for a bacterial enzyme with a possible role in ß-glucan metabolization. Here, we report that the enzyme, mrbExg5, has exo-ß-1,3-glucanase activity on ß-1,3-linked glucooligosaccharides and laminarin, but not on ß-1,6- or ß-1,4-glycosidic bonds. Longer oligosaccharides are good substrates, while shorter substrates are readily transglycosylated into longer products. The enzyme belongs to glycoside hydrolase subfamily GH5_44, which is a close phylogenetic neighbor of the subfamily GH5_9 exo-ß-1,3-glucanases of the yeasts Saccharomyces cerevisiae and Candida albicans. The crystal structure shows that unlike the eukaryotic relatives, mrbExg5 is a functional homodimer with a binding region characterized by: (i) subsite +1 can accommodate a branched sugar on the ß-1,3-glucan backbone; (ii) subsite +2 is restricted to exclude backbone substituents; and (iii) a fourth subsite (+3) formed by a unique loop. mrbExg5 is the first GH5_44 enzyme to be structurally characterized, and the first bacterial GH5 with exo-ß-1,3-glucanase activity.


Subject(s)
Microbiota , Saccharomyces cerevisiae , Animals , Glycoside Hydrolases/genetics , Glycoside Hydrolases/metabolism , Phylogeny , Rumen , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Substrate Specificity
9.
J Mol Biol ; 432(16): 4658-4672, 2020 07 24.
Article in English | MEDLINE | ID: mdl-32569746

ABSTRACT

Protein glycosylation constitutes a critical post-translational modification that supports a vast number of biological functions in living organisms across all domains of life. A seemingly boundless number of enzymes, glycosyltransferases, are involved in the biosynthesis of these protein-linked glycans. Few glycan-biosynthetic glycosyltransferases have been characterized in vitro, mainly due to the majority being integral membrane proteins and the paucity of relevant acceptor substrates. The crenarchaeote Pyrobaculum calidifontis belongs to the TACK superphylum of archaea (Thaumarchaeota, Aigarchaeota, Crenarchaeota, Korarchaeota) that has been proposed as an eukaryotic ancestor. In archaea, N-glycans are mainly found on cell envelope surface-layer proteins, archaeal flagellins and pili. Archaeal N-glycans are distinct from those of eukaryotes, but one noteworthy exception is the high-mannose N-glycan produced by P. calidifontis, which is similar in sugar composition to the eukaryotic counterpart. Here, we present the characterization and crystal structure of the first member of a crenarchaeal membrane glycosyltransferase, PcManGT. We show that the enzyme is a GDP-, dolichylphosphate-, and manganese-dependent mannosyltransferase. The membrane domain of PcManGT includes three transmembrane helices that topologically coincide with "half" of the six-transmembrane helix cellulose-binding tunnel in Rhodobacter spheroides cellulose synthase BcsA. Conceivably, this "half tunnel" would be suitable for binding the dolichylphosphate-linked acceptor substrate. The PcManGT gene (Pcal_0472) is located in a large gene cluster comprising 14 genes of which 6 genes code for glycosyltransferases, and we hypothesize that this cluster may constitute a crenarchaeal N-glycosylation (PNG) gene cluster.


Subject(s)
Mannosyltransferases/chemistry , Mannosyltransferases/metabolism , Polysaccharides/metabolism , Pyrobaculum/enzymology , Archaeal Proteins/chemistry , Archaeal Proteins/metabolism , Crystallography, X-Ray , Glycosylation , Models, Molecular , Protein Conformation , Protein Processing, Post-Translational , Pyrobaculum/chemistry
10.
Biotechnol Biofuels ; 12: 97, 2019.
Article in English | MEDLINE | ID: mdl-31044010

ABSTRACT

BACKGROUND: Propionic acid (PA), a key platform chemical produced as a by-product during petroleum refining, has been widely used as a food preservative and an important chemical intermediate in many industries. Microbial PA production through engineering yeast as a cell factory is a potentially sustainable alternative to replace petroleum refining. However, PA inhibits yeast growth at concentrations well below the titers typically required for a commercial bioprocess. RESULTS: Adaptive laboratory evolution (ALE) with PA concentrations ranging from 15 to 45 mM enabled the isolation of yeast strains with more than threefold improved tolerance to PA. Through whole genome sequencing and CRISPR-Cas9-mediated reverse engineering, unique mutations in TRK1, which encodes a high-affinity potassium transporter, were revealed as the cause of increased propionic acid tolerance. Potassium supplementation growth assays showed that mutated TRK1 alleles and extracellular potassium supplementation not only conferred tolerance to PA stress but also to multiple organic acids. CONCLUSION: Our study has demonstrated the use of ALE as a powerful tool to improve yeast tolerance to PA. Potassium transport and maintenance is not only critical in yeast tolerance to PA but also boosts tolerance to multiple organic acids. These results demonstrate high-affinity potassium transport as a new principle for improving organic acid tolerance in strain engineering.

11.
Int J Mol Sci ; 20(1)2019 Jan 06.
Article in English | MEDLINE | ID: mdl-30621365

ABSTRACT

While in search of an enzyme for the conversion of xylose to xylitol at elevated temperatures, a xylose reductase (XR) gene was identified in the genome of the thermophilic fungus Chaetomium thermophilum. The gene was heterologously expressed in Escherichia coli as a His6-tagged fusion protein and characterized for function and structure. The enzyme exhibits dual cofactor specificity for NADPH and NADH and prefers D-xylose over other pentoses and investigated hexoses. A homology model based on a XR from Candida tenuis was generated and the architecture of the cofactor binding site was investigated in detail. Despite the outstanding thermophilicity of its host the enzyme is, however, not thermostable.


Subject(s)
Aldehyde Reductase/chemistry , Aldehyde Reductase/metabolism , Chaetomium/enzymology , Amino Acid Sequence , Binding Sites , Coenzymes/metabolism , Enzyme Stability , Fungal Proteins/biosynthesis , Fungal Proteins/isolation & purification , Half-Life , Hydrogen-Ion Concentration , Kinetics , Substrate Specificity , Temperature
12.
PLoS One ; 13(9): e0204703, 2018.
Article in English | MEDLINE | ID: mdl-30261037

ABSTRACT

Commensal and pathogenic bacteria have evolved efficient enzymatic pathways to feed on host carbohydrates, including protein-linked glycans. Most proteins of the human innate and adaptive immune system are glycoproteins where the glycan is critical for structural and functional integrity. Besides enabling nutrition, the degradation of host N-glycans serves as a means for bacteria to modulate the host's immune system by for instance removing N-glycans on immunoglobulin G. The commensal bacterium Cutibacterium acnes is a gram-positive natural bacterial species of the human skin microbiota. Under certain circumstances, C. acnes can cause pathogenic conditions, acne vulgaris, which typically affects 80% of adolescents, and can become critical for immunosuppressed transplant patients. Others have shown that C. acnes can degrade certain host O-glycans, however, no degradation pathway for host N-glycans has been proposed. To investigate this, we scanned the C. acnes genome and were able to identify a set of gene candidates consistent with a cytoplasmic N-glycan-degradation pathway of the canonical eukaryotic N-glycan core. We also found additional gene sequences containing secretion signals that are possible candidates for initial trimming on the extracellular side. Furthermore, one of the identified gene products of the cytoplasmic pathway, AEE72695, was produced and characterized, and found to be a functional, dimeric exo-ß-1,4-mannosidase with activity on the ß-1,4 glycosidic bond between the second N-acetylglucosamine and the first mannose residue in the canonical eukaryotic N-glycan core. These findings corroborate our model of the cytoplasmic part of a C. acnes N-glycan degradation pathway.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Mannosidases/chemistry , Mannosidases/metabolism , Propionibacteriaceae/enzymology , Amino Acid Substitution , Bacterial Proteins/genetics , Catalytic Domain , Crystallography, X-Ray , Genes, Bacterial , Glycoproteins/metabolism , Host Microbial Interactions , Humans , Kinetics , Mannosidases/genetics , Models, Molecular , Mutagenesis, Site-Directed , Polysaccharides/chemistry , Polysaccharides/metabolism , Propionibacteriaceae/genetics , Propionibacteriaceae/pathogenicity , Protein Conformation , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Substrate Specificity
13.
Nat Commun ; 8(1): 120, 2017 07 25.
Article in English | MEDLINE | ID: mdl-28743912

ABSTRACT

Protein glycosylation is a critical protein modification. In biogenic membranes of eukaryotes and archaea, these reactions require activated mannose in the form of the lipid conjugate dolichylphosphate mannose (Dol-P-Man). The membrane protein dolichylphosphate mannose synthase (DPMS) catalyzes the reaction whereby mannose is transferred from GDP-mannose to the dolichol carrier Dol-P, to yield Dol-P-Man. Failure to produce or utilize Dol-P-Man compromises organism viability, and in humans, several mutations in the human dpm1 gene lead to congenital disorders of glycosylation (CDG). Here, we report three high-resolution crystal structures of archaeal DPMS from Pyrococcus furiosus, in complex with nucleotide, donor, and glycolipid product. The structures offer snapshots along the catalytic cycle, and reveal how lipid binding couples to movements of interface helices, metal binding, and acceptor loop dynamics to control critical events leading to Dol-P-Man synthesis. The structures also rationalize the loss of dolichylphosphate mannose synthase function in dpm1-associated CDG.The generation of glycolipid dolichylphosphate mannose (Dol-P-Man) is a critical step for protein glycosylation and GPI anchor synthesis. Here the authors report the structure of dolichylphosphate mannose synthase in complex with bound nucleotide and donor to provide insight into the mechanism of Dol-P-Man synthesis.


Subject(s)
Archaeal Proteins/metabolism , Mannose/biosynthesis , Mannosyltransferases/metabolism , Pyrococcus furiosus/metabolism , Amino Acid Sequence , Archaeal Proteins/chemistry , Archaeal Proteins/genetics , Binding Sites/genetics , Biocatalysis , Crystallography, X-Ray , Mannose/chemistry , Mannosyltransferases/chemistry , Mannosyltransferases/genetics , Models, Molecular , Protein Domains , Pyrococcus furiosus/enzymology , Pyrococcus furiosus/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Sequence Homology, Amino Acid
14.
Appl Microbiol Biotechnol ; 100(8): 3533-43, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26621798

ABSTRACT

Lactose is produced in large amounts as a by-product from the dairy industry. This inexpensive disaccharide can be converted to more useful value-added products such as galacto-oligosaccharides (GOSs) by transgalactosylation reactions with retaining ß-galactosidases (BGALs) being normally used for this purpose. Hydrolysis is always competing with the transglycosylation reaction, and hence, the yields of GOSs can be too low for industrial use. We have reported that a ß-glucosidase from Halothermothrix orenii (HoBGLA) shows promising characteristics for lactose conversion and GOS synthesis. Here, we engineered HoBGLA to investigate the possibility to further improve lactose conversion and GOS production. Five variants that targeted the glycone (-1) and aglycone (+1) subsites (N222F, N294T, F417S, F417Y, and Y296F) were designed and expressed. All variants show significantly impaired catalytic activity with cellobiose and lactose as substrates. Particularly, F417S is hydrolytically crippled with cellobiose as substrate with a 1000-fold decrease in apparent k cat, but to a lesser extent affected when catalyzing hydrolysis of lactose (47-fold lower k cat). This large selective effect on cellobiose hydrolysis is manifested as a change in substrate selectivity from cellobiose to lactose. The least affected variant is F417Y, which retains the capacity to hydrolyze both cellobiose and lactose with the same relative substrate selectivity as the wild type, but with ~10-fold lower turnover numbers. Thin-layer chromatography results show that this effect is accompanied by synthesis of a particular GOS product in higher yields by Y296F and F417S compared with the other variants, whereas the variant F417Y produces a higher yield of total GOSs.


Subject(s)
Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Galactose/metabolism , Halothiobacillus/enzymology , Oligosaccharides/biosynthesis , Protein Engineering , beta-Glucosidase/genetics , beta-Glucosidase/metabolism , Bacterial Proteins/chemistry , Halothiobacillus/chemistry , Halothiobacillus/genetics , Kinetics , Lactose/metabolism , Substrate Specificity , beta-Glucosidase/chemistry
15.
Plant Sci ; 241: 151-63, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26706067

ABSTRACT

Plant mannanases are enzymes that carry out fundamentally important functions in cell wall metabolism during plant growth and development by digesting manno-polysaccharides. In this work, the Arabidopsis mannanase 5-2 (AtMan5-2) from a previously uncharacterized subclade of glycoside hydrolase family 5 subfamily 7 (GH5_7) has been heterologously produced in Pichia pastoris. Purified recombinant AtMan5-2 is a glycosylated protein with an apparent molecular mass of 50kDa, a pH optimum of 5.5-6.0 and a temperature optimum of 25°C. The enzyme exhibits high substrate affinity and catalytic efficiency on mannan substrates with main chains containing both glucose and mannose units such as konjac glucomannan and spruce galactoglucomannan. Product analysis of manno-oligosaccharide hydrolysis shows that AtMan5-2 requires at least six substrate-binding subsites. No transglycosylation activity for the recombinant enzyme was detected in the present study. Our results demonstrate diversification of catalytic function among members in the Arabidopsis GH5_7 subfamily.


Subject(s)
Arabidopsis Proteins , Arabidopsis/genetics , Oligosaccharides/metabolism , Pichia/metabolism , beta-Mannosidase , Amino Acid Sequence , Arabidopsis/enzymology , Hydrolysis , Organisms, Genetically Modified , Pichia/genetics , Sequence Alignment
16.
Nat Commun ; 6: 7542, 2015 Jul 07.
Article in English | MEDLINE | ID: mdl-26151670

ABSTRACT

A new paradigm for cellulose depolymerization by fungi focuses on an oxidative mechanism involving cellobiose dehydrogenases (CDH) and copper-dependent lytic polysaccharide monooxygenases (LPMO); however, mechanistic studies have been hampered by the lack of structural information regarding CDH. CDH contains a haem-binding cytochrome (CYT) connected via a flexible linker to a flavin-dependent dehydrogenase (DH). Electrons are generated from cellobiose oxidation catalysed by DH and shuttled via CYT to LPMO. Here we present structural analyses that provide a comprehensive picture of CDH conformers, which govern the electron transfer between redox centres. Using structure-based site-directed mutagenesis, rapid kinetics analysis and molecular docking, we demonstrate that flavin-to-haem interdomain electron transfer (IET) is enabled by a haem propionate group and that rapid IET requires a closed CDH state in which the propionate is tightly enfolded by DH. Following haem reduction, CYT reduces LPMO to initiate oxygen activation at the copper centre and subsequent cellulose depolymerization.


Subject(s)
Carbohydrate Dehydrogenases/metabolism , Cellulose/metabolism , Fungal Proteins/metabolism , Fungi/enzymology , Carbohydrate Conformation , Carbohydrate Dehydrogenases/genetics , Catalytic Domain , Cloning, Molecular , Flavin-Adenine Dinucleotide/metabolism , Fungal Proteins/genetics , Fungi/genetics , Fungi/metabolism , Heme/metabolism , Models, Molecular , Mutagenesis, Site-Directed , Mutation , Protein Binding , Protein Conformation
17.
Acta Crystallogr F Struct Biol Commun ; 71(Pt 3): 338-45, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25760712

ABSTRACT

A gene from the heterotrophic, halothermophilic marine bacterium Halothermothrix orenii has been cloned and overexpressed in Escherichia coli. This gene encodes the only glycoside hydrolase of family 43 (GH43) produced by H. orenii. The crystal structure of the H. orenii glycosidase was determined by molecular replacement and refined at 1.10 Šresolution. As for other GH43 members, the enzyme folds as a five-bladed ß-propeller. The structure features a metal-binding site on the propeller axis, near the active site. Based on thermal denaturation data, the H. orenii glycosidase depends on divalent cations in combination with high salt for optimal thermal stability against unfolding. A maximum melting temperature of 76°C was observed in the presence of 4 M NaCl and Mn(2+) at pH 6.5. The gene encoding the H. orenii GH43 enzyme has previously been annotated as a putative α-L-arabinofuranosidase. Activity was detected with p-nitrophenyl-α-L-arabinofuranoside as a substrate, and therefore the name HoAraf43 was suggested for the enzyme. In agreement with the conditions for optimal thermal stability against unfolding, the highest arabinofuranosidase activity was obtained in the presence of 4 M NaCl and Mn(2+) at pH 6.5, giving a specific activity of 20-36 µmol min(-1) mg(-1). The active site is structurally distinct from those of other GH43 members, including arabinanases, arabinofuranosidases and xylanases. This probably reflects the special requirements for degrading the unique biomass available in highly saline aqueous ecosystems, such as halophilic algae and halophytes. The amino-acid distribution of HoAraf43 has similarities to those of mesophiles, thermophiles and halophiles, but also has unique features, for example more hydrophobic amino acids on the surface and fewer buried charged residues.


Subject(s)
Bacterial Proteins/chemistry , Firmicutes/enzymology , Glycoside Hydrolases/chemistry , Amino Acid Sequence , Catalytic Domain , Crystallography, X-Ray , Kinetics , Models, Molecular , Protein Structure, Secondary , Substrate Specificity
18.
Appl Microbiol Biotechnol ; 99(4): 1731-44, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25173693

ABSTRACT

Lactose is a major disaccharide by-product from the dairy industries, and production of whey alone amounts to about 200 million tons globally each year. Thus, it is of particular interest to identify improved enzymatic processes for lactose utilization. Microbial ß-glucosidases (BGL) with significant ß-galactosidase (BGAL) activity can be used to convert lactose to glucose (Glc) and galactose (Gal), and most retaining BGLs also synthesize more complex sugars from the monosaccharides by transglycosylation, such as galacto-oligosaccharides (GOS), which are prebiotic compounds that stimulate growth of beneficial gut bacteria. In this work, a BGL from the thermophilic and halophilic bacterium Halothermothrix orenii, HoBGLA, was characterized biochemically and structurally. It is an unspecific ß-glucosidase with mixed activities for different substrates and prominent activity with various galactosidases such as lactose. We show that HoBGLA is an attractive candidate for industrial lactose conversion based on its high activity and stability within a broad pH range (4.5-7.5), with maximal ß-galactosidase activity at pH 6.0. The temperature optimum is in the range of 65-70 °C, and HoBGLA also shows excellent thermostability at this temperature range. The main GOS products from HoBGLA transgalactosylation are ß-D-Galp-(1→6)-D-Lac (6GALA) and ß-D-Galp-(1→3)-D-Lac (3GALA), indicating that D-lactose is a better galactosyl acceptor than either of the monosaccharides. To evaluate ligand binding and guide GOS modeling, crystal structures of HoBGLA were determined in complex with thiocellobiose, 2-deoxy-2-fluoro-D-glucose and glucose. The two major GOS products, 3GALA and 6GALA, were modeled in the substrate-binding cleft of wild-type HoBGLA and shown to be favorably accommodated.


Subject(s)
Clostridium/enzymology , Galactose/metabolism , Lactose/metabolism , Oligosaccharides/biosynthesis , beta-Glucosidase/genetics , beta-Glucosidase/metabolism , Clostridium/genetics , Crystallography, X-Ray , Enzyme Stability , Glucose/metabolism , Hydrogen-Ion Concentration , Models, Molecular , Protein Conformation , Substrate Specificity , Temperature , beta-Glucosidase/chemistry
19.
Biosci Rep ; 34(6): e00167, 2014 Dec 23.
Article in English | MEDLINE | ID: mdl-25372605

ABSTRACT

Methanothermobacter marburgensis is a strictly anaerobic, thermophilic methanogenic archaeon that uses methanogenesis to convert H2 and CO2 to energy. M. marburgensis is one of the best-studied methanogens, and all genes required for methanogenic metabolism have been identified. Nonetheless, the present study describes a gene (Gene ID 9704440) coding for a putative NAD(P)H: quinone oxidoreductase that has not yet been identified as part of the metabolic machinery. The gene product, MmNQO, was successfully expressed, purified and characterized biochemically, as well as structurally. MmNQO was identified as a flavin-dependent NADH:quinone oxidoreductase with the capacity to oxidize NADH in the presence of a wide range of electron acceptors, whereas NADPH was oxidized with only three acceptors. The 1.50 Å crystal structure of MmNQO features a homodimeric enzyme where each monomer comprises 196 residues folding into flavodoxin-like α/ß domains with non-covalently bound FMN (flavin mononucleotide). The closest structural homologue is the modulator of drug activity B from Streptococcus mutans with 1.6 Å root-mean-square deviation on 161 Cα atoms and 28% amino-acid sequence identity. The low similarity at sequence and structural level suggests that MmNQO is unique among NADH:quinone oxidoreductases characterized to date. Based on preliminary bioreactor experiments, MmNQO could provide a useful tool to prevent overflow metabolism in applications that require cells with high energy demand.


Subject(s)
Archaeal Proteins/metabolism , Cytosol/enzymology , Methanobacteriaceae/enzymology , NAD(P)H Dehydrogenase (Quinone)/metabolism , Amino Acid Sequence , Archaeal Proteins/chemistry , Archaeal Proteins/genetics , Biocatalysis , Cloning, Molecular , Crystallography, X-Ray , DNA, Archaeal/chemistry , DNA, Archaeal/genetics , Dapsone/analogs & derivatives , Dapsone/metabolism , Escherichia coli/genetics , Flavin Mononucleotide/metabolism , Kinetics , Methanobacteriaceae/genetics , Models, Molecular , Molecular Sequence Data , NAD(P)H Dehydrogenase (Quinone)/chemistry , NAD(P)H Dehydrogenase (Quinone)/genetics , NADP/metabolism , Protein Binding , Protein Folding , Protein Structure, Tertiary , Recombinant Proteins/metabolism , Sequence Analysis, DNA , Sequence Homology, Amino Acid
20.
PLoS One ; 9(1): e86736, 2014.
Article in English | MEDLINE | ID: mdl-24466218

ABSTRACT

Each year, about six million tons of lactose are generated from liquid whey as industrial byproduct, and optimally this large carbohydrate waste should be used for the production of value-added products. Trametes multicolor pyranose 2-oxidase (TmP2O) catalyzes the oxidation of various monosaccharides to the corresponding 2-keto sugars. Thus, a potential use of TmP2O is to convert the products from lactose hydrolysis, D-glucose and D-galactose, to more valuable products such as tagatose. Oxidation of glucose is however strongly favored over galactose, and oxidation of both substrates at more equal rates is desirable. Characterization of TmP2O variants (H450G, V546C, H450G/V546C) with improved D-galactose conversion has been given earlier, of which H450G displayed the best relative conversion between the substrates. To rationalize the changes in conversion rates, we have analyzed high-resolution crystal structures of the aforementioned mutants with bound 2- and 3-fluorinated glucose and galactose. Binding of glucose and galactose in the productive 2-oxidation binding mode is nearly identical in all mutants, suggesting that this binding mode is essentially unaffected by the mutations. For the competing glucose binding mode, enzyme variants carrying the H450G replacement stabilize glucose as the α-anomer in position for 3-oxidation. The backbone relaxation at position 450 allows the substrate-binding loop to fold tightly around the ligand. V546C however stabilize glucose as the ß-anomer using an open loop conformation. Improved binding of galactose is enabled by subtle relaxation effects at key active-site backbone positions. The competing binding mode for galactose 2-oxidation by V546C stabilizes the ß-anomer for oxidation at C1, whereas H450G variants stabilize the 3-oxidation binding mode of the galactose α-anomer. The present study provides a detailed description of binding modes that rationalize changes in the relative conversion rates of D-glucose and D-galactose and can be used to refine future enzyme designs for more efficient use of lactose-hydrolysis byproducts.


Subject(s)
Carbohydrate Dehydrogenases/metabolism , Galactose/metabolism , Glucose/metabolism , Halogenation/physiology , Trametes/metabolism , Carbohydrate Dehydrogenases/genetics , Galactose/genetics , Glucose/genetics , Hydrolysis , Lactose/genetics , Lactose/metabolism , Models, Molecular , Mutation/genetics , Oxidation-Reduction , Trametes/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...